Project Title	Funding	Institution	
Eye movement dynamics in autism spectrum disorders	\$0	Carnegie Mellon University	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Research Foundation for Mental Hygiene, Inc.	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Research Foundation for Mental Hygiene, Inc.	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Research Foundation for Mental Hygiene, Inc.	
Autism spectrum disorders and the visual analysis of human motion	\$0	Rutgers, The State University of New Jersey	
Regulation of synaptogenesis by cyclin-dependent kinase 5	\$0	Massachusetts Institute of Technology	
PI3K/mTOR signaling as a novel biomarker and therapeutic target in autism	\$0	Emory University	
Investigating brain organization and activation in autism at the whole-brain level	\$0	California Institute of Technology	
Brain-behavior interactions and visuospatial expertise in autism: a window into the neural basis of autistic cognition	\$0	Hospital Riviere-des-Praires, University of Montreal, Canada	
Probing the temporal dynamics of aberrant neural communication and its relation to social processing deficits in autism spectrum disorders	\$0	University of Pittsburgh	
The role of the GRIP protein complex in AMPA receptor trafficking and autism spectrum disorders	\$0	Johns Hopkins University	
Linguistic perspective-taking in adults with high-functioning autism: Investigation of the mirror neuron system	\$0	Carnegie Mellon University	
Deciphering the function and regulation of AUTS2	\$0	University of California, San Francisco	
Macrocephalic autism: Exploring and exploiting the role of PTEN	\$0	University of Wisconsin - Madison	
Development of brain connectivity in autism	\$0	New York School of Medicine	
Preference acquisition in children and adolescents with and without autism spectrum disorder	\$0	Dalhousie University	
Exploring the uncanny valley	\$0	Carnegie Mellon University	
Collaborative research: Learning complex auditory categories	\$0	Carnegie Mellon University	
Collaborative research: RUI: Perceptual pick-up processes in interpersonal coordination	\$0	College of the Holy Cross	
Face perception: Mapping psychological spaces to neural responses	\$0	Stanford University	
Synchronous activity in networks of electrically coupled cortical interneurons	\$0	University of California, Davis	
CAREER: Integrative behavioural and neurophysiological studies of normal and autistic cognition using video game environments	\$0	Cornell University	
CAREER: The role of prosody in word segmentation and lexical access	\$0	Michigan State University	
CAREER: Dissecting the neural mechanisms for face detection	\$0	California Institute of Technology	
How autism affects speech understanding in multitalker environments	\$0	University of Maryland, College Park	
Head-fixed recording of sensory learning in mouse autism models	\$0	Princeton University	
Transcriptional responsiveness in lymphoblastoid cell lines	\$0	University of Pennsylvania	
Dimensions of mind perception	\$0	Harvard University	
The role of CNTNAP2 in embryonic neural stem cell regulation	\$0	Johns Hopkins University School of Medicine	

Project Title	Funding	Institution	
Functional analysis of neurexin IV in Drosophila	\$0	University of California, Los Angeles	
CDI-TYPE II: From language to neural representations of meaning	\$0	Carnegie Mellon University	
HCC:Small:Computational studies of social nonverbal communication	\$0	University of Southern California	
Multiple systems in theory of mind development	\$0	Rutgers, The State University of New Jersey - New Brunswick	
Neural basis of empathy and its dysfunction in autism spectrum disorders (ASD)	\$0	Duke University	
Role of autism-susceptibility gene, CNTNAP2, in neural circuitry for vocal communication	\$0	University of California, Los Angeles	
MTHFR functional polymorphism C677T and genomic instability in the etiology of idiopathic autism in simplex families	\$0	Queen's University	
White matter glial pathology in autism	\$0	East Tennessee State University	
Serotonin signal transduction in two groups of autistic patients	\$0	University of Illinois at Chicago	
Early expression of autism spectrum disorder in experimental animals	\$0	Neurochlore	
Self-injurious behavior: An animal model of an autism endophenotype	\$0	University of Florida	
Excessive cap-dependent translation as a molecular mechanism underlying ASD	\$0	New York University	
Developing novel automated apparatus for studying battery of social behaviors in mutant mouse models for autism	\$0	Weizmann Institute of Science	
Collaborative research: Modeling perception and memory: Studies in priming	\$0	University of California, San Diego	
Neural mechanisms underlying an extended multisensory temporal binding window in ASD	\$0	Vanderbilt University	
Behavioral and neural correlates of reward motivation in children with autism spectrum disorders	\$0	University of North Carolina at Chapel Hill	
Social behavior deficits in autism: Role of amygdala	\$0	State University of New York Upstate Medical Center	
Infants' developing representation of object function	\$0	University of California, Davis	
Development of a connectomic functional brain imaging endophenotype of autism	\$0	University of Cambridge	
Using near-infrared spectroscopy to measure the neural correlates of social and emotional development in infants at risk for autism spectrum disorder	\$0	University of New South Wales	
Stimulus-driven attention deficits in autism	\$0	University of Minnesota	
Collaborative research: Learning complex auditory categories	\$0	University of Arizona	
The effects of autism on the sign language development of deaf children (supplement)	\$1,188	Boston University	
3 Tesla 31Phosphorus magnetic resonance spectroscopy in disorder with abnormal bioenergetics	\$3,250	Massachusetts General Hospital	
CAREER: Statistical models and classification of time-varying shape	\$8,000	University of Utah	

Project Title	Funding	Institution	
Urokinase-type plasminogen activator plasma concentration and its relationship to hepatocyte growth factor (HGF) and GABA levels in autistic children	\$8,505	Hartwick College	
A preliminary investigation of the neurobehavioral basis of sensory behavior in autism	\$10,000	Kennedy Krieger Institute	
Extended tracking of single synaptic proteins with upconverting nanoparticles	\$10,819	University of California; Lawrence Berkeley National Laboratory	
The neural basis of weak central coherence in autism spectrum disorders	\$13,040	Yale University	
Behavioral and neural responses to emotional faces in individuals with ASD	\$14,935	Harvard University	
The neural substrates of social interactions	\$15,865	University of Iowa	
Elucidating the function of class 4 semaphorins in GABAergic synapse formation (supplement)	\$23,015	Brandeis University	
Using high definition fiber tracking to define developmental neurobiologic mechanisms & a neural basis for behavioral heterogeneity	\$25,000	Carnegie Mellon University	
Neuroprotective effects of oxytocin receptor signaling in the enteric nervous system	\$25,000	Columbia University	
The neural bases of top-down attentional control in autism spectrum disorders	\$27,578	City College of New York	
Semaphorin4D and PlexinB1 mediate GABAergic synapse development in mammalian CNS	\$27,814	Brandeis University	
Enhancing neurobehavioural and clinical definitions in autism spectrum disorders	\$28,000	Monash University	
Stimulus preceding negativity and social stimuli in autism spectrum disorder	\$28,600	University of California, San Diego	
Spatial attention in autism spectrum disorders	\$28,600	New York University	
Thalamocortical connectivity in children and adolescents with ASD-A combined fcMRI and DTI approach	\$28,600	San Diego State University	
Learning in autism spectrum disorders	\$28,902	University of California, Davis	
Pragmatics and semantics in autism spectrum disorder	\$29,155	City University of New York Graduate School and University Center	
Neuropeptide regulation of juvenile social behaviors	\$29,550	Boston College	
Neural underpinning of emotion perception and its disorders	\$30,000	Dartmouth College	
Abnormal connectivity in autism	\$30,000	University of California, Los Angeles	
Transcriptional regulators in normal human brain development and autism	\$30,002	University of California, Los Angeles	
Modulation of RhoA signaling by the mRNA binding protein hnRNPQ1	\$30,912	Emory University	
Elucidation of the developmental role of Jakmip1, and autism-susceptibility gene	\$31,474	University of California, Los Angeles	
The striatal circuitry underlying autistic-like behaviors	\$31,975	Duke University	
Homeostatic regulation of presynaptic function by dendritic mTORC1	\$32,747	University of Michigan	
Neural mechanisms of imitative behavior: Implications for mental health	\$33,128	University of California, Los Angeles	

Project Title	Funding	Institution
Statistical word learning and non-social visual attention in children with autism	\$33,148	University of Wisconsin - Madison
Presynaptic regulation of quantal size by the cation/H+ exchangers NHE6 & NHE9	\$33,932	University of California, Berkeley
Integrative functions of the planum temporale (supplement)	\$34,768	University of California, Irvine
Examining connectivity patterns of brain networks participating in social cognition in ASD	\$40,000	San Diego State University
Functional role of IL-6 in fetal brain development and abnormal behavior	\$42,232	California Institute of Technology
Molecular controls over callosal projection neuron subtype specification and diversity	\$42,232	Harvard University
Roles of miRNAs in regulation of Foxp2 and in autism	\$45,000	Louisiana State University
Role of negative regulators of FGF signaling in frontal cortex development and autism	\$45,000	University of California, San Francisco
Identification of genetic pathways that regulate neuronal circuits in C. elegans	\$47,114	University of California, San Diego
Behavioral, fMRI, and anatomical MRI investigations of attention in autism	\$47,114	Massachusetts Institute of Technology
Understanding the role of Epac2 in cognitive function	\$47,232	Northwestern University
GABAergic dysfunction in autism	\$48,000	Johns Hopkins University
Pathologic and genetic characterization of novel brain cortical patches in young autistic brains	\$50,000	University of California, San Francisco
Attention & word learning in children with ASD- Translating experimental findings into intervention	\$50,600	Women & Infants Hospital
ERK signaling in autism associated with copy number variation of 16p11.2	\$51,290	Case Western Reserve University
Cortical dynamics in autism	\$52,190	New York University
Role of neuronal migration genes in synaptogenesis and plasticity	\$52,190	Weill Cornell Medical College
Brain electrophysiology of interactive social stimuli	\$52,984	Yale University
Role of CNTNAP2 in neuronal structural development and synaptic transmission	\$53,500	Stanford University
High metabolic demand of fast-spiking cortical interneurons underlying the etiology of autism	\$54,500	Weill Cornell Medical College
Multimodal studies of executive function deficits in autism spectrum disorders	\$54,570	Massachusetts General Hospital
Mapping functional connectivity networks in autism spectrum disorder with diffuse optical tomography	\$55,170	Washington University in St. Louis
Understanding the brain basis of impaired imitation learning in autism	\$55,200	Kennedy Krieger Institute
Functional properties and directed connectivity in the face-processing network	\$55,670	Yale University
Multimodal neuroimaging of motor dysfunction in autism spectrum disorders	\$56,000	University of Colorado Denver
Characterizing the regulatory pathways and regulation of AUTS2	\$57,964	University of California, San Francisco

Project Title	Funding	Institution	
Role of GluK6 in cerebella circuitry development	\$58,442	Yale University	
The effects of autism on the sign language development of deaf children	\$59,419	Boston University	
Subependymal zone function in autism spectrum disorders	\$59,560	University of Oxford	
Role of major vault protein in autism	\$59,972	Yale University	
A novel transplantation assay to study human PTEN ASD alleles in GABAergic interneurons	\$60,000	University of California, San Francisco	
Investigation of social brain circuits and fever-evoked response in 16p11.2 mice	\$60,000	Cold Spring Harbor Laboratory	
Perturbed cortical patterning in autism	\$60,000	Seattle Children's Hospital	
Multisensory processing in autism	\$60,000	Baylor College of Medicine	
Functional analysis of patient mutations in EPHB2, an ASD candidate gene-Core	\$62,475	McLean Hospital	
Social interaction and reward in autism: Possible role for ventral tegmental area	\$62,496	University of Geneva	
Local connectivity in altered excitation/inhibition balance states	\$62,500	Weizmann Institute of Science	
Genetic model to study the ASD-associated gene A2BP1 and its target PAC1	\$62,500	Weizmann Institute of Science	
Endosomal NHE6 in long-range connectivity and autism	\$62,500	Brown University	
Molecular signatures of autism genes and the 16p11.2 deletion	\$62,500	Massachusetts General Hospital	
Identification and analysis of ASD patients with PI3K/mTOR signalopathies	\$66,500	Emory University	
Controlling interareal gamma coherence by optogenetics, pharmacology and behavior	\$84,775	Massachusetts Institute of Technology	
CAREER: Typical and atypical development of brain regions for theory of mind	\$86,848	Massachusetts Institute of Technology	
Investigating brain connectivity in autism at the whole-brain level	\$88,508	California Institute of Technology	
Electrophysiological response to executive control training in autism	\$89,670	University of Washington	
Linking local activity and functional connectivity in autism (supplement)	\$92,508	San Diego State University	
Bayesian variable selection in generalized linear models with missing variables	\$95,377	Hunter College (City University of New York)	
Neural synchronydysfunction of gamma oscillations in autism (supplement)	\$100,386	University of Colorado Denver	
The role of neurexin IV in central nervous system development	\$100,466	University of California, Los Angeles	
Experience and cognitive development in infancy	\$102,038	University of California, Davis	
Action anticipation in infants	\$102,258	University of Chicago	
Cognitive control of emotion in autism	\$102,638	University of Pittsburgh	
The computational basis of theory of mind in the human brain	\$103,965	California Institute of Technology	
Neuroimaging of top-down control and bottom-up processes in childhood ASD (supplement)	\$111,600	Georgetown University	

Project Title	Funding	Institution	
CLARITY: circuit-dynamics and connectivity of autism-related behavior	\$124,320	Stanford University	
RNA dysregulation in autism	\$125,000	The Rockefeller University	
Development of ventral stream organization	\$137,338	University of Pittsburgh	
Neuropathology of the social-cognitive network in Autism: a comparison with other structural theories	\$140,718	University of Oxford	
Monolingual and bilingual infants' sensitivity to agreement morphology in Spanish	\$144,100	Florida International University	
The role of Fox-1 in neurodevelopment and autistic spectrum disorder	\$145,757	University of California, Los Angeles	
Defining the electrophysiological dynamics of the default mode network	\$146,025	University of Washington	
Neuroligin, oxidative stress and autism	\$150,000	Oklahoma Medical Research Foundation	
Investigation of a possible role of the protocahderin gene cluster in autism	\$150,000	Columbia University	
Multimodal imaging of social brain networks in ASD	\$150,036	San Diego State University	
Using fruit flies to map the network of autism-associated genes	\$156,245	University of California, San Diego	
Proteome and interaction networks in autism	\$156,250	Harvard Medical School	
Functional analysis of EFR3A mutations associated with autism	\$156,250	Yale University	
Cerebellar plasticity and learning in a mouse model of autism	\$156,250	University of Chicago	
Motor control and cerebellar maturation in autism	\$157,148	University of Texas Southwestern Medical Center	
Structural and functional neuroimaging of the auditory system in autism	\$157,905	Children's Hospital of Philadelphia	
Neural basis of cross-modal influences on perception	\$158,282	University of California, San Diego	
Neurobehavioral investigation of tactile features in autism spectrum disorders	\$162,666	Vanderbilt University Medical Center	
Multimodal brain imaging in autism spectrum disorders	\$167,832	University of Washington	
Identification of candidate genes at the synapse in autism spectrum disorders	\$168,839	Yale University	
Structural and functional connectivity of large-scale brain networks in autism	\$168,978	Stanford University	
BRIGE: Emotion mapping of children through human-robot interaction and affective computing	\$174,583	University of Louisville Research Foundation Inc	
Role of neurexin in the amygdala and associated fear memory	\$175,000	Columbia University	
Investigation of social brain circuits in mouse models of the 16p11.2 locus	\$175,000	Cold Spring Harbor Laboratory	
EEG-based assessment of functional connectivity in autism	\$175,042	Kennedy Krieger Institute	
Young development of a novel PET ligand for detecting oxytocin receptors in brain (supplement)	\$176,000	Emory University	
Functional analysis of patient mutations in EPHB2, an ASD candidate gene- Project 1	\$177,512	Yale University	
A neural model of fronto-parietal mirror neuron system dynamics	\$183,960	University of Maryland, College Park	
Regulation of spine morphogenesis by NrCAM	\$185,000	University of North Carolina at Chapel Hill	

Project Title	Funding	Institution	
Multisensory integration in children with ASD	\$192,136	University of California, Davis	
In vivo targeted gene silencing, a novel method	\$192,500	Indiana University-Purdue University Indianapolis	
The neural substrates of higher-level learning in autism	\$192,500	University of California, Davis	
Decoding 'what' and 'who' in the auditory system of children with autism spectrum disorders	\$197,500	Stanford University	
Neurexin-neuroligin trans-synaptic interaction in learning and memory	\$200,000	Columbia University	
The genetic control of social behavior in the mouse (supplement)	\$201,966	University of Hawai'i at Manoa	
Diffusion tensor MR spectroscopic imaging in human brain	\$203,715	University of New Mexico Health Sciences Center	
Novel regulatory network involving non-coding role of an ASD candidate gene PTEN	\$208,750	Albert Einstein College of Medicine of Yeshiva University	
Metacognition in comparative perspective	\$210,561	University at Buffalo, The State University of New York	
Neurobiological signatures of audiovisual speech perception in children in ASD	\$217,886	Haskins Laboratories, Inc.	
Effect of paternal age on mutational burden and behavior in mice	\$222,000	University of North Carolina at Chapel Hill	
Influence of attention and arousal on sensory abnormalities in ASD	\$232,500	University of California, San Diego	
Neocortical mechanisms of categorical speech perception	\$239,255	University of California, San Francisco	
Testing the hyperspecificity hypothesis: A neural theory of autism	\$247,018	Children's Hospital of Philadelphia	
Met signaling in neural development and circuitry formation	\$249,000	University of Arizona	
Investigating brain connectivity in autism at the whole-brain level	\$249,001	Indiana University	
Retrograde synaptic signaling by Neurexin and Neuroligin in C. elegans	\$250,000	Massachusetts General Hospital	
Corticothalamic circuit interactions in autism	\$250,000	Boston Children's Hospital	
Modeling 5-HT-absorbing neurons in neuropathology of autism	\$250,500	Albert Einstein College of Medicine of Yeshiva University	
Evaluating the time-dependent unfolding of social interactions in autism	\$252,622	University of Cincinnati	
Autism and the insula: Genomic and neural circuits	\$254,696	California Institute of Technology	
Neural mechanisms of tactile sensation in rodent somatosensory cortex	\$255,940	University of California, Berkeley	
A functional genomic analysis of the cerebral cortex	\$256,413	University of California, Los Angeles	
Young development of a novel PET ligand for detecting oxytocin receptors in brain	\$261,360	Emory University	
Neural synchronydysfunction of gamma oscillations in autism	\$265,073	University of Colorado Denver	
RI: Small: Addressing visual analogy problems on the raven's intelligence test	\$284,454	Georgia Tech Research Corporation	
Alterations in brain-wide neuroanatomy in autism mouse models	\$300,000	Cold Spring Harbor Laboratory	
Imaging PTEN-induced changes in adult cortical structure and function in vivo	\$300,156	University of California, Los Angeles	
Cerebellar modulation of frontal cortical function	\$302,306	University of Memphis	

Project Title	Funding	Institution	
Neuronal basis of vicarious reinforcement dysfunction in autism spectrum disorder	\$310,081	Duke University	
Caspr2 as an autism candidate gene: A proteomic approach to function & structure	\$312,000	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School	
ACE Center: Ontogeny and neural basis of social visual engagement in monkeys	\$314,068	Emory University	
ACE Center: Neuroimaging studies of connectivity in ASD	\$315,268	Yale University	
Social and affective components of communication	\$317,715	Salk Institute For Biological Studies	
Impairments of theory of mind disrupt patterns of brain activity	\$321,000	Massachusetts Institute of Technology	
Magnetoencephalographic studies of lexical processing and abstraction in autism	\$321,156	University of Pennsylvania	
Molecular dissection of calmodulin domain functions	\$321,473	University of Iowa	
Statistical analysis of biomedical imaging data in curved space	\$326,528	University of North Carolina at Chapel Hill	
Inhibitory mechanisms for sensory map plasticity in cerebral cortex	\$328,644	University of California, Berkeley	
The microstructural basis of abnormal connectivity in autism	\$332,991	University of Utah	
Atypical architecture of prefrontal cortex in young children with autism	\$335,103	University of California, San Diego	
Defining cells and circuits affected in autism spectrum disorders	\$336,872	The Rockefeller University	
Elucidating the function of class 4 semaphorins in GABAergic synapse formation	\$336,922	Brandeis University	
Physiology of attention and regulation in children with ASD and LD	\$341,013	Seattle Children's Hospital	
The impact of Pten signaling on neuronal form and function	\$346,014	Dartmouth College	
Psychobiological investigation of the socioemotional functioning in autism	\$347,490	Vanderbilt University Medical Center	
Learning and plasticity in the human brain	\$351,533	National Institutes of Health	
Development of face processing expertise	\$351,984	University of Toronto	
Engrailed targets and the control of synaptic circuits in Drosophila	\$352,100	University of Puerto Rico Medical Sciences Campus	
Neural basis of behavioral flexibility	\$360,214	Mount Sinai School of Medicine	
Cellular density and morphology in the autistic temporal human cerebral cortex	\$363,672	University of California, Davis	
Canonical neural computation in autism spectrum disorders	\$365,741	New York University	
Linking local activity and functional connectivity in autism	\$370,304	San Diego State University	
Synaptic processing in the basal ganglia	\$377,815	University of Washington	
Towards an endophenotype for amygdala dysfunction	\$380,304	California Institute of Technology	
Imaging signal transduction in single dendritic spines	\$382,200	Duke University	
Molecular mechanisms of the synaptic organizer alpha-neurexin	\$383,267	University of Michigan	
Typical and pathological cellular development of the human amygdala	\$385,000	University of California, Davis	

Project Title	Funding	Institution	
Neuroimaging of top-down control and bottom-up processes in childhood ASD	\$387,066	Georgetown University	
Auditory and integrative functions of the prefrontal cortex	\$387,285	University of Rochester	
Vasopressin receptor polymorphism and social cognition	\$395,156	Georgia State University	
Motor skill learning in autism	\$395,908	Kennedy Krieger Institute	
Shank3 in synaptic function and autism	\$401,250	Massachusetts Institute of Technology	
High throughput screen for small molecule probes for neural network development	\$405,000	Johns Hopkins University	
Morphogenesis and function of the cerebral cortex	\$409,613	Yale University	
Social brain networks for the detection of agents and intentions	\$414,688	Yale University	
Glial control of neuronal receptive ending morphology	\$418,275	The Rockefeller University	
Behavioral and neural processing of faces and expressions in nonhuman primates	\$435,600	Emory University	
Integrative functions of the planum temporale	\$440,810	University of California, Irvine	
Networked cortical responses to movement associated with ASD	\$449,700	University of Washington	
High-throughput DNA sequencing method for probing the connectivity of neural circuits at single-neuron resolution	\$464,475	Cold Spring Harbor Laboratory	
Engrailed genes and cerebellum morphology, spatial gene expression and circuitry	\$470,003	Sloan-Kettering Institute for Cancer Research	
Function of neurexins	\$473,710	Stanford University	
Analysis of Shank3 complete and temporal and spatial specific knockout mice	\$481,448	Duke University	
Cell adhesion molecules in autism: A whole-brain study of genetic mouse models	\$485,438	Cold Spring Harbor Laboratory	
Genetic studies of autism-related Drosophila neurexin and neuroligin	\$489,104	University of North Carolina at Chapel Hill	
Development of the functional neural systems for face expertise	\$507,685	University of California, San Diego	
Cell adhesion molecules in CNS development	\$534,562	The Scripps Research Institute - California	
Neurobiological correlates of language dysfunction in autism spectrum disorders	\$535,052	The Mind Research Network	
Function and structure adaptations in forebrain development	\$541,770	University of Southern California	
Sensory processing and integration in autism	\$548,158	Albert Einstein College of Medicine of Yeshiva University	
Executive function in children with typical and atypical language abilities	\$564,177	University of Wisconsin - Madison	
Taste, smell, and feeding behavior in autism: A quantitative traits study	\$570,508	University of Rochester	
The social brain in schizophrenia and autism spectrum disorders	\$594,733	Hartford Hospital	
Characterizing mechanistic heterogeneity across ADHD and autism	\$611,788	Oregon Health & Science University	
Brain bases of language deficits in SLI and ASD	\$614,180	Massachusetts Institute of Technology	

Project Title	Funding	Institution
Dual modulators of GABA-A and Alpha7 nicotinic receptors for treating autism	\$615,849	University of California, Irvine
The role of the new mTOR complex, mTORC2, in autism spectrum disorders	\$625,998	Baylor College of Medicine
Dynamic regulation of Shank3 and ASD	\$646,316	Johns Hopkins University
Mathematical cognition in autism: A cognitive and systems neuroscience approach	\$652,461	Stanford University
Kinetics of drug macromolecule complex formation	\$712,921	University of California, San Diego
Novel computational methods for higher order diffusion MRI in autism	\$725,545	University of Pennsylvania
Computational characterization of language use in autism spectrum disorder	\$738,723	Oregon Health & Science University
Function and dysfunction of neuroligins in synaptic circuits	\$750,000	Stanford University
Impact of SynGAP1 mutations on synapse maturation and cognitive development	\$789,981	The Scripps Research Institute - Florida
SHB: Type II (INT): Synthesizing self-model and mirror feedback imageries with applications to behavior modeling for children with autism	\$798,912	University of Kentucky Research Foundation
The cognitive neuroscience of autism spectrum disorders	\$1,074,095	National Institutes of Health
Functional anatomy of face processing in the primate brain	\$1,660,304	National Institutes of Health